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Pacific Island Climate is Changing

• Rainfall (-15%) and stream discharge have decreased

• Air temperature is increasing (0.3oF/decade)

• Rainstorm intensity has increased (+12%)

• Ocean has grown more acidic

• Sea surface temperature is rising (0.22oF/decade)

• Sea level is rising

In Hawaii



Western tropical Pacific – ground zero for 
sea-level rise

Sea level rise 
>1m/century

Samoa

Hawaii



Acceleration 
ca. 1990

M. Merrifield,
UH Sea Level Center

Tide gauge data 
reveal increase in 
average sea level

Satellite altimetry
Indicate a similar 
trend



Sea level Estimates - 2100
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Adapting to sea-level rise and 
inundation

1. Explore the issues of sea level rise with the community to develop a shared 
vision of what is at risk and the qualities stakeholders want to protect 
(community-based climate risk management).

2. Map the problem using best and worst case scenarios.

3. Develop adaptation strategies
a) Building codes

b) Retreat strategies

c) Defense strategies

d) Food, flood, transportation engineering

4. No regrets policy – areas troubled now, are likely to get worse

5. Identify funding, create plans, establish an authority

6. Stage activities, apply triage priorities

Raise 
roadbed,

new routes

King Tides

Sea level rise will be a 
significant problem where 
people live on the coast

http://www.noaa.gov/index.html
http://www.usgs.gov/


American Samoa – June 2010
Amouli, Vatia, Fagaalu

Vatia

Amouli

Fagaalu



Building a digital 
elevation model 

for Amouli



Data integration

• Field collected kinematic GPS survey used to anchor total 
station elevation survey (1100 points in low elevations with 
multiple setups)

• Ground level photographs of the survey area within the village

• Combined existing GIS 
layers and survey data 
with digitized village 
structures and 
geomorphic features 
from ground-level 
photographs and 
satellite imagery



Scheduling

(Vermeer and Rahmstorf, 2009)

high

low

current



Low range scenario     

1 ft

1 week per year
3 weeks per year

3 months per year



Amouli 



Amouli



Hawaii

• 2 approaches
1. Modeling

• Buoy wave data transformed and run up using increase 
in sea level





Hawaii

• 2 approaches
1. Modeling

• Buoy wave data transformed and run up using increase 
in sea level

2. Predictive 
• Using Vermeer and Rahmstorf, 2009 sea level rise 

predictions on existing tide station data
• Visualize increased water heights on tidal DEM

• Both require a DEM with Tide related 
elevations



Sea level Estimates - 2100
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Methods: 
Orthometric hts Tidal DEM 

• Hawaii has many definitions of zero elevation
– msl (tide station), msl (NAVD88), mllw (multiple 

tide stations), mhhw, ltd, Ellipsoid height (GRS 80, 
WGS 84 interations), etc.

• Integrating data can become a puzzle of 
figuring out what transformations have been 
done to each dataset and what steps need to 
be taken to relate the data to a common and 
relevant datum (tidal is our choice) 



Deriving and integrating elevation 
datasets

• GOAL: Define a relationship between available 
terrain datasets and tide gauge sea levels 
– Between LiDAR sets with apparent vertical offset 

(Maui)
• Series of checkpoints located on planar surfaces

– Between the integrated LiDAR data and the local 
tide station (Oahu and Maui)

• Using Tidal Benchmark locations



Oahu

• NGA LiDAR covers the entire south shore of 
Oahu
– Qualitative analysis:

• Pearl Harbor water elevations > 0
• Datum reported to be NAVD88 (there is no NAVD88 

datum for Hawaii yet…)

– Quantitative analysis: 
• Only a DEM is available – no point data
• Vertical offset between benchmark location elevations 

and DEM = - 0.162 ± 0.096 m
– Applied to water level height calculations (+ 0.162 m)





Oahu Data Source: NGA LiDAR
Tidal Datum: MHHW
1 ft interval scenarios















Waikiki affected structures

MHHW
+1
+2
+3



Maui

• Multiple LiDAR datasets
– USACE, NOAA, FEMA, Maui County

• Apparent offset in overlapping areas

• Varying levels of detail in metadata. 
Specifically concerning vertical datum 
calculation

• Referenced to NAVD88 using between 1 and 6 
control points. Different GPS control for each 
survey. 



Deriving and integrating elevation 
datasets

• GOAL: Define a relationship between available 
terrain datasets 
– Between LiDAR sets with apparent vertical offset

• Series of checkpoints located on planar surfaces

– Between the integrated LiDAR data and the local 
tide station

• Using Tidal Benchmark locations



Integrating LiDAR datasets using planar 
surfaces (< 2o slope)

ZNOAA (m) ZUSACE (m)

Description Location (m) µ σ n µ σ n Δµ

Basketball court 744,014E, 2,324,251N 13.81 0.04 67 13.58 0.04 288 0.23

Parking lot 745,401E, 2,324,650N 72.16 0.06 15 71.76 0.10 80 0.4

Road 1 742,909E, 2,324,005N 32.13 0.13 34 31.91 0.16 260 0.22

Road 2 744,475E, 2,324,740N 18.00 0.12 40 17.59 0.10 126 0.41

Road 3 746,284E, 2,326,341N 57.06 0.09 27 56.47 0.10 117 0.59

Road 4 743,170E, 2,324,064N 50.97 0.07 19 50.65 0.09 68 0.32

Road 5 745,393E, 2,325,407N 21.91 0.2 51 21.45 0.20 67 0.46

Tennis court 1 743,491E, 2,324,279N 19.91 0.03 29 19.53 0.06 116 0.38

Tennis court 2 742,733E, 2,323,622N 13.53 0.04 72 13.15 0.03 112 0.38

Tennis court 3 745,081E, 2,324,552N 48.16 0.06 35 47.73 0.05 64 0.43

Mean 0.38

Stdev 0.10



Integrated LiDAR data and tide stations

Benchmark n Zmin Zmax Zσ Zµ ZDEM ZBM Δpts ΔDEM

161 5680 A 1 2.15 2.15 0.00 2.15 2.11 1.93 0.22 0.18

161 5680 C TIDAL 6 1.65 1.85 0.07 1.77 1.76 1.46 0.31 0.3

161 5680 TIDAL 11 9 2.02 2.11 0.03 2.05 2.06 2.11 -0.06 -0.05

161 5680 TIDAL 12 8 1.68 1.81 0.04 1.75 1.76 1.37 0.38 0.39

161 5680 TIDAL 2 12 2.15 2.23 0.03 2.19 2.2 2.50 -0.31 -0.3

161 5680 TIDAL 5 12 2.05 2.18 0.04 2.11 2.11 1.86 0.25 0.25

161 5680 TIDAL 6 3 2.58 2.61 0.02 2.59 2.58 2.41 0.18 0.17

161 5680 TIDAL 8 5 2.64 2.71 0.03 2.67 2.67 2.80 -0.13 -0.13

161 5680 TIDAL 9 7 2.50 2.66 0.06 2.56 2.54 2.58 -0.02 -0.04

Δµ 0.09 0.09

Δσ 0.23 0.23

Kahului Harbor, Maui: Bare earth USACE LiDAR points (n) within a 2 m radius of NGS tidal benchmarks

Using Tidal Benchmark locations, LiDAR points and interpolated DEM (for comparison)

RMSE       0.23 m







Sea Level Risk 
and 

Vulnerability



Questions?

Thank You
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