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Measuring the rough with the smooth:
Using LiDAR bathymetry to predict fish & coral distributions



Part 1 - Background
• Explain how bathymetric LiDAR is acquired
• Describe study area
• Discuss importance of study

Part 2 - Methods 
• Integration of biological & physical datasets 

Part 3 - Analysis
• Summarize key results
• Provide concluding remarks

AGENDA



Part 1

What is 
LiDAR?

Light 
Detection 

And 
Ranging

Figure adapted from Brock et al. 2004

Green Beam 
532 nm (depths)

IR Beam 1064 nm               
(water surface height)



Part 1 : Study Area (SW Puerto Rico)

Biological Sampling Sites



Habitat gradients important

PART 1 : Mapping Seascapes for Ecological Studies

• Passive optical sensors
• 2D thematic map

- Homogeneous patches
- Discrete patch boundaries

• Ecologically meaningful?

A.) CONVENTIONAL 2D APPROACH

PATCH-MOSAIC MODEL

X

Y

Vertical heterogeneity important
X

Y
Z

Even more       
complex
Not complex

More complex



PART 1 : Mapping Seascapes for Ecological Studies

• Passive optical sensors
• 2D thematic map

- Homogeneous patches
- Discrete patch boundaries

• Ecologically meaningful?

A.) CONVENTIONAL 2D APPROACH

PATCH-MOSAIC MODEL

X

Y

B.) 3D SPATIAL GRADIENTS

• Active optical & acoustic 
• Continuous topography
• No patch boundaries
• cm - meters resolution
• Ecologically meaningful?

X

Y
Z

CONTINUUM MODEL
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Part 1 : Research Questions

• Is LiDAR bathymetry useful for predicting 
the diversity & abundance of fish & corals?

• Which morphometric(s) are the best 
predictors for fish & corals?

• Which spatial scales are most influential?
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Pittman et al. 2007, Ecological Modeling 204, 9-21 

PART 2 : Quantifying Substratum Morphology

1. Apply 
morphometrics

2. Quantify metrics at 
multiple spatial scales



Faunal surveys n = 1000
19 faunal metrics

Multiscale morphometric 
surfaces n=42
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Part 2 : Assembling response/predictor variables



Part 2 : Predictive modeling using TreeNet™
(Boosted Regression Trees)
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• Lots of small trees (100s - 1000s) grown sequentially
• New tree learns from failings of previous tree to boost final model

• New nonparametric, non-linear approach to machine learning

First tree 
intentionally 

“weak”

Tree 1

2nd tree predicts 
residuals from 

first tree

Tree 2

3rd tree predicts 
residuals from 

Tree 1 & 2

Tree 3

Tree ensemble
method of 
boosting

+ + +?

TreeNetTM developed by Jerry Friedman, 1999 (Stanford University)



Compared 16 modeling techniques using 226 species from 6 regions

Elith et al. 2006. Ecography. 29:2

Boosted 
regression trees
performed best
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(AUC) Area Under the Receiver Operating Characteristic Curve

Part 2: Comparing Models



Part 3 : Which morphometric was most important?

1. Slope of slope - best predictor for :
- coral species richness & abundance
- 13 out of 17 fish metrics

2. Rugosity - best predictor for 3 metrics

3. Curvature - best predictor for 1 metric

Best TreeNet models 
(R2)

Herbivore biomass   0.72

Parrotfish biomass   0.68

Coral sp. richness    0.65

Fish sp. richness      0.64

Fish Species Richness

Slope-Slope 
(15 m)

Fish Sp. 
Richness



Part 3 : Which spatial scales were most important?

Herbivorous fish biomass Piscivorous fish biomass

• 65% of metrics influenced by more local variability ( ≤ 25 m radius)

• Piscivores responded to structure at broader scales than herbivores



Part 3 : Using classes of complexity as predictors

Slope of Slope          
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Part 3 : The End / Just the Beginning

Conclusions:

1. LiDAR morphometrics useful predictors
• Offer great potential to support EBM decisions

2. Surface complexity should be integrated with 2D maps
• Studies linking surface patterns to ecological processes needed

Future Directions:

1. Development of spatial predictions

2. Explore additional predictive metrics
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END



Part 2 : Using classes of complexity as predictors



Pearson Correlation: LiDAR surfaces may be better predictors of fish/corals than in situ measures

RESULTS: Which technique produced the best predictor(s)                 
of fish/coral species richness & abundance?

In situ LiDARResponse



RESULTS : Which morphometric was the most important 
predictor of fish/coral species richness & abundance?

(Hard & softbottom)

1. Slope-slope exhibited strongest & most frequent significant correlations
2. More variance explained by non-linear functions 

Boosted 
Reg. Trees



Hard-bottom
sites

Soft-bottom
sites <0.12

Rugosity
>0.12

Target = Fish species richness

SD of Depth
<1.8 >1.8

SD of depth
<0.43 >0.43

Higher 
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Morphometric profiles
Bathymetry (Profile)
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METHODS: Morphometrics

Slope

Rugosity

Fig. Adapted from Jenness, 2002

Fig. Adapted from ESRI, 2008

Curvature

Fig. Adapted from ESRI, 2008

Fractal Dimension

Slope of Slope

= Surface Area / Planar Area = Convexity or Concavity   
(4th order polynomial fit)

FD = - [log (n1/n2)/ log(L1/L2)]        
n = # elements                             
L = linear size

Mandelbrot, 1967
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